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Abstract
Randomization tests provide a conceptually simple, distribution-free way to implement significance 
testing.  We have applied this method to the problem of evaluating the significance of the association 
among a number (k) of variables.  The randomization method was the random re-ordering of  k-1 of the 
variables.  The criterion variable was the value of the largest eigenvalue of the correlation matrix.  

Introduction
The experimental data for which the randomization test was devised were collected to measure possible 
changes in cognitive abilities and in ratings of cognitive test difficulty following a simulated space 
ascent in a vibration-augmented centrifuge (Adelstein, et al., 2009). The simulated space ascent study 
was done to evaluate the effects of G-load and vibration on display legibility (Beard, et al., 2009).  The 
cognitive study was “piggy-backed” onto the legibility study. Each of 11 participants was given a 5 test 
battery before and after the "ride" were also asked to rate the difficulty/unpleasantness of each test on 5 
dimensions. The problem was then to assess the statistical significance of the correlations among the 
ratings and the tests. 

Multiple Correlation Correction
One approach would be to look at the largest absolute correlation and correct for the number of 
correlations being considered. A strict Bonferroni correction for n multiple significance tests at joint 
level α is α/n for each single test (Benjamini & Hochberg, 1995) .  For a k = 5 test battery, there are 
k(k-1)/2 = 10 correlations to test. The simulation of Appendix 2 showed that the correction provided an 
accurate estimate of the significance of the maximum correlation for correlation matrices similar in size 
to ours constructed from independent Gaussian variables. However, the maximum correlation is 
relatively powerless against the alternative that the correlation is caused by a single common factor 
(Malevergne & Sornettea, 2004).  

Largest Eigenvalue
Anderson (1958) shows that when all the correlations have the same value, the optimal test for whether 
there is a correlation is based on the largest eigenvalue or principal component of the correlation 
matrix.  However, the distribution of the largest principal component is usually derived for asymptotic 
conditions (Johnstone, 2001) and for the case in which it comes from a covariance matrix rather than a 
correlation matrix (Harris, 2001).  

The Randomization Test
Randomization tests have the advantages that they are distribution free and that the criterion statistic 
can be chosen to improve power against desired alternative hypotheses (Fisher, 1935; Siegel, 1956; 
Edgington, 1969). Given that our ratings are not normally distributed and the simplicity of  using a 
randomization test, we developed the test shown in Appendix 1.  It also serves as a randomization test 
for bi-variate correlation. Anderson (1958) shows that a likelihood ratio statistic for the hypothesis of 
independence against the general hypothesis is the product of the eigenvalues (i. e., the determinant of 
the covariance matrix).  The function of Appendix 1 is easily modified to the use the product of 1 to k 
eigenvalues as the criterion statistic for the randomization test.
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Appendix 1
A Matlab implementation of the randomization test.
function [pr, s, u, c] = randeig1cor(x, nr, sd, mn)
% largest eigenvalue statistic randomization test
%  based on the covariance matrix if mn =1
%  based on the correlation matrix if mn = sd = 1
% input x: N subjects by k scores matrix
% input nr: is the number of randomizations
% input sd: flag to normalize by standard deviations, 1=yes
% input mn: flag to normalize by means, 1=yes
% output pr: the proportion of randomizations whose first eigenvalue
%            exceeds or equals that of the sample 
% output s: the sample eigenvalues
% output u: the sample eigenvectors
% output c: the sample covariance matrix
[N k]= size(x);
y = x;
if mn
    y = y - repmat(mean(y),[N 1]) ;
end
if sd
    y = y ./ repmat(std(y),[N 1]) ;



end
c = (y'*y)/(N-1) ;
[u s] = svd(c);
s1 = s(1);
pr = 0;
for ir = 1:nr
    for  ik = 2:k
        y(:,ik) = y(randperm(N),ik) ;
    end
    [ui si] = svd((y'*y)/(N-1));
    pr = pr + (si(1)>= s1) ;
end
pr = pr/nr; 
% % test data
% x = [ [1 2  7  5  6 10]; [5 6 10 11 12 13]]' ;
% nr = 1000;
% % [pr s1 ];%  0.0170    1.9139

Appendix 2
A Matlab simulation of the Bonferroni method for adjusting the significance level to test the 
significance of  the largest correlation in a correlation matrix.
% Test Bonferroni method for maximum correlation
N = 32; % so t df (N-2) will be in usual t table
N2 = N-2;
k = 5; % # of correlations is 5*4/2 = 10
p = [0.05 0.01] ; % significance levels
pb = p/(k*(k-1)/2) ; % Bonferroni level
tb = [3.029798 3.645959]; % tinv(pb,30) from Open Office Calc
% http://www.socr.ucla.edu/Applets.dir/T-table.html 
% t = c/sqrt((1-c^2)/N2) => c = t/sqrt(t^2+N2)
cb = tb./sqrt(tb.^2+N2); % [0.4840 0.5541] Bonferroni criteria
nrep = 400000 ;
for ip = 1:2
 samp = zeros(nrep,1);
 for irep = 1:nrep
     c = corrcoef(randn(N,k))-diag(ones(k,1));
     samp(irep) = max(abs(c(:)));
 end
 psamp(ip) = sum(samp>cb(ip)) %  975 1030 1035 (three runs)
 samp = sort(samp);
 cbsamp(ip) = 0.5*(samp(nrep*(1-p(ip)))+samp(nrep*(1-p(ip))+1));  
end
% Estimated appropriate test criteria
cbsamp  %  0.4823    0.5537
% Estimated actual significances
psamp/nrep  %  0.0482    0.0099


